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M athematically modeling the 
kinetics of batch and 
continuous cultivation 
allows you to not only 

calculate and evaluate the effects of 
process parameters, but also to 
forecast those parameters and duration 
of cultivation to develop a cost-
effective production process. 
Mathematical modeling 
microorganism cultivation was 
intensively developed in the second 
half of the last century. 

Monod proposed Equation 1 for 
batch processes in 1942 (1). In that 
equation, μ and μmax are the specific 
and maximum growth rates, 
respectively (h–1), S is the substrate 
concentration, (g/L), and KS denotes a 
Monod semisaturation constant (g/L). 
That model implies that yield Y is a 
constant value. For continuous-mode 
cultivation (e.g., chemostat), Y can be 
calculated using Equation 2, in which 
X is the biomass concentration (g/L), 
and S0 is the limiting substrate 
concentration in the input (g/L). For a 
continuous cultivation at f low rate D 

(h–1), combined solution of Equations 
1 and 2 gives the equation called a 
Monod model for chemostat cultivation 
under full stirred conditions and 
substrate limitation. For the biomass, 
this is Equation 3, and for the limiting 
substrate it is Equation 4.

In 1959, Luedeking and Piret (2) 
presented a model describing cell 
cultivation to produce valuable 
metabolites. Moser (3) in 1958 and 
Andrews (4) in 1968 both described 
models for continuous processes, 
taking into account substrate 
inhibition as an example of trying to 
resolve some limitations of the Monod 
theory. Their work is shown as 
Equations 5 and 6, in which K * 
denotes a new parameter not 
considered in Equation 1, provided 
that K * > 1, and Ki is the inhibition 
constant.

The improved Monod equation and 
kinetic models on its base describe 
biomass growth and formation of 
target products gave rise to various 
stochastic, unstructured, and 

structured models, which Gormely 
reviewed in detail in 1973 (5). Pirt (6), 
Bailey and Ollis (7), and Terskov and 
Gurevich (12) presented the 
classification and critical analysis of 
the developed kinetic models. Some 
studies have linked process kinetics to 
the physiological state of cells and to 
the concentration of substrates 
consumed for biomass growth and 
maintenance of population viability 
(8–11, 13–24).

(www.sxc.hu)

Equations 1–6
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Here we discuss the method of 
structuring a cell population into 
dividing and nondividing cells of zero 
age. We describe universal laws 
deduced mathematically and show 
graphically the types of static 
characteristics of continuous-mode 
cultivation X = f (D). The Monod 
equation and the other well-known 
models are the particular cases of our 
proposed model. In addition, we 
provide some discrepancies of the 
proposed method from the Monod 
model:

• Extreme dependence of a specific 
growth rate on substrate concentration 
implies a maximum specific growth 
rate, which differs from the results 
obtained from the Monod equation.

• Specific growth rate depends on 
inhibitory metabolite concentration, 
which differs from the propsed model.

• The proposed model describes 
energy (oxygen) limitation when the 
concentration of substrate (oxygen) is 
very low due to its extremely low 
solubility. The Monod model and 
others do not consider such a case.

Materials and Methods 
Our previous structured approach for 
calculating the model and to control 
batch processes is based on two 
differential equations for biomass 
growth inhibition phase (GIP) (13-16). 
For the biomass, Equation 7 applies. 
In that equation, n is the integer, an 
order of the derivative of the function; 

Xdiv is the quntity of dividing cells; Xst 
is the qauntity of nondividing (stable) 
cells; K is a product of overall growth 
rate and the rate of accumulation of 
stable or nondividing cells; A is the 
ratio of maintenance energy to the 
energy consumed for biomass growth 
or a specific rate of accumulation of 
stable or nondividing cells. 
Furthermore, C = 1 if n = 1, and C = 0 
if n ≥ 2. 

For the target product (substrate), 
Equation 8 applies. In that equation, 
P is the target product, S denotes the 
limiting substrate, kdiv

P,S (h–1) and 
kst

P,S (h–1) are the product and 

substrate constants of dividing and 
nondividing cells, respectively. 

To get a generalized model of the 
chemostat, we will use equations for 
the total amount of biomass in GIP, a 
share of nondividing cells (R = Xst/X, 
in which X is the total biomass for 
GIP), changes in the number of 
nondividing cells and their share XstR 
at the end of logarithmic growth 
phase (LGP), and a specific rate of 
product formation and substrate 
consumption (Equation 8). This is 
Equation 9, in which q is defined by 
Equation 10.

Yield is determined by Equation 
11. In a steady state, f low rate is equal 
to the specific growth rate (Equation 
12) (1–6).

Under equilibrium conditions, 
Equations 9 and 10 may be equated. 
Then multiplying the left and right 
sides of the equation for Y (Equation 
11), we obtain the final equation for 
the dependence of f low rate on the 
number of nondividing cells and yield 
(Equation 13). As we show below, 
Equation 13 represents a generalized 
equation. It combines all the cases of 
culture behavior in all f low processes, 
and describes all deviations from the 
Monod model.

Clearly, there are no limits for 
exponential cell growth. The rate of 
substrate consumption is maximum 
and is expressed by kdiv, provided that 
maximum specific growth rate μmax  
follows Equation 14. In such case, it is 

Table 1:  Model parameters and significant factors for the calculation of various types of static characteristics

Shape of Static Characteristics Curves XDmax (g/L) X(D →0) (g/L) Dmax = Ykdiv ≈ μmax* (h–1) Ykst (h–1) Sign in Equations 20, 21

Conformity with the Monod model 0.65 1.5 1.111 0.518 +

Deviation 1 from the Monod model
  1) For D > μmax X>0
  2) For D ≤ μmax
A limiting factor of cell growth enters 
the system regardless of medium flow.

0.28 0.65 1.111 0.759 +

Deviation 2 from the Monod model;
Substrate inhibition and endogenous
metabolism

0.65 1.5 1.111 0.518 –

Deviation 3 from the Monod model;
Presence of the inhibitor in the nutrient 
medium

0.28 0.65 1.111 0.363 +

Deviation 4 from the Monod model;
Inhibition by the product

3 6 0 0.518 –

Deviation 5 from the Monod model;
Oxygen limitation

5 10 0 0.518 –

Deviation from the Monod model;
Endogenous metabolism

0.65 1.5 0 0.518 +

Equations 7–14: 

Equation 7

Equation 8                           

Equation 9                          

Equation 11        Equation 12

dn Xdiv

d(Xst)n
=

K
A2

(–1)(n – 1)n!
(Xst)(n + 1)

– C

Equation 13

Equation 14

d[P or (–S)/dτ = kdiv
P,SXdiv + Kst

P,S X
st

q = kp
div + (kp

st – kp
div)R

Equation 10
q = (–dS/dτ)* (1/X)

Y = –dX/dS D = µ

qY = (–dS/dτ)* (1/X) * (–dX/dS) =
Ykdiv + Y (kst – kdiv)*R = µ = D

µmax  
Ykdiv = Dmax
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impossible to control the chemostat, 
and biomass concentration in the 
stationary growth phase may take any 
arbitrary value (7).

If growth rate is limited by some 
substrate, then nondividing cells must 
appear in the system. Such cells 
possess a limiting substrate 
consumption distinctive rate kst that 
affects the static characteristics. 
Previous studies showed that 
nondividing cells can be formed at the 
end of LGP during batch fermentation 
(13–16). We show below that this very 
phenomenon accounts for the observed 
deviations from the Monod model and 
is expressed in the absence output of 
microorganisms predicted by the 
Monod model when the rate of 
dilution D is equal to or significantly 
higher than μmax. So, we must 
examine cultivation at D ≥ μmax and 
D < μmax. In previous studies (13–16), 
we used Equations 15–17 for R at the 
end of LGP and GIP. In those 
equations, X denotes the total biomass 
concentration in the batch process, 
and Xl (defined by Equation 16) is the 

biomass concentration at the 
beginning of population structuring.

 Equations 15 and 17 correspond to 
D ≥ μmax and D < μmax, respectively.
Parameters X(D→0) and XDmax 
correspond to parameters Xp and XLim, 
respectively during batch fermentation 
in the chemostat. The values of X(D→0) 
are always greater than those of XDmax 
for all types of static characteristics 
(such as D < μmax), except for 
“endogenous metabolism” 
characteristics (9) for which 
X(D→0) < XDmax. Substitution of 
Equations 15 and 17 into Equations 
13 and 15 shows the dependence of 
f low rate D on the equilibrium 
concentration of the biomass X for 
cases in which D ≥ μmax and D < μmax. 
The results are Equations 18 and 19.

If the left and right sides of 
Equation 18 are multiplied by X, and 
Equation 19 is converted to ((D – 
Ykdiv)*X)–1 = f(X), and both sides of 
the resulting expression are divided by 
X, then the resulting equations (20 
and 21) of the structured model 
determine static characteristics of the 
chemostat.

If dependencies of the experimental 
data are built according to Equations 
20 and 21 in the coordinates (D – 
Ykdiv)*X = f(X–1) and ((D – Ykdiv)*X)–1 

= f(X), then it would be possible to 
work out all the parameters of the 
chemostat structured model. 
Parameters μmax, Y, S0, XLim, Xp, A, 
and K/A2 can be determined first in 
the batch process. The points of those 
graphical dependencies, which are 
described by relevant laws, should be 
well grouped around a straight line. 
Deviations from the straight line 

indicate the action of one of the above 
lows. Common chemostat models 
represent static processes as a function 
X = f(D). So, Equations 20 and 21 
have been converted in accordance 
with a generally accepted view. For 
D ≥ μmax and D < μmax, these 
equations appear, respectively, as 
Equations 22 and 23. In Equation 23, 
X1 has a positive (+) solution to match 
the Monod model, and X2 has a 
negative (-) solution for cultures with 
“endogenous metabolism” in 
compliance with results from Bailey 
and Ollis (7). 

Equation 19 can be used to 
calculate a low boundary of the 
chemostat operating range (the 
admissible value D at which the 
equilibrium concentration of the 
biomass will be guaranteed to match 
the values of X being set by the 
proposed chemostat model). For the 
static characteristics of the type 
D ≤ μmax, this value corresponds to 
D = Ykst. Using Equation 23, you can 
determine the equilibrium 
concentration of biomass X for the 
upper boundary of the permissible 
f low rate in the chemostat, when 
D ≤ μmax, at D = μmax. The former 
value is optimal in terms of biomass as 
a target product because it ensures 
maximum productivity. In practice, it 
often happens that when D = μmax, 
equilibrium biomass concentration X = 
0.5X(D→0), lower as it was shown in 
the example of “Conformity with the 
Monod model” (Table 1). As a rule, 
any deviation from the boundaries of 
the determined range can lead to 
uncontrollable changes in the 
equilibrium states. However, 
remember that the state D = μmax is 

Equations 15–23: 

Equation 15          Equation 16

Equation 17                           

Equation 18                          

Equation 20       

Equation 21 

Equation 19

R  = 2X1(1/X – X1/X2) X1 = XLim/Xp

 KR =
A2(Xp*X – X2)

D – Ykdiv  = 2Y (kst – kdiv) XDmax 
1
X

–

2Y(kst – kdiv) XDmax

2 1
X2

Y(kst – kdiv)K
D – Ykdiv  =

A2(X(D       0) X – X2)

Equation 22

(D – Ykdiv )X = 2Y (kst – kdiv) XDmax  –  

                         2Y (kst – kdiv) XDmax

2 1
X

(D – Ykdiv )X
1 =

A2X(D       0)

KY(kst – kdiv)
A2X–

KY(kst – kdiv)

X = [ 
1

2XDmax 

+ √ 1
4XDmax

2
– (D – Ykdiv )

2Y (kst – kdiv) XDmax
2 ]

–1

Equation 23

X1,2 =  
2 

± √
4

–
(D – Ykdiv )A

X(D       0) X(D       0) 
2 Y(kst – kdiv) K

2

Figure 1:  Data on Aerobacter cloacae growth 
in a batch culture.
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Figure 2:  Parameters of static characteristics 
of D ≥ μmax ; line is (D – Ykdiv)X = 0.0547X–1 – 
0.199.
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impossible in all processes. To control 
such processes, the parameter 
concentration S0 in the input f low, 
should be taken into account. Also, 
the quality of the nutrient medium 
composition should cause concern 
because possible growth inhibitors 
may be present in it.

Results and Discussion 
Equation 13 as a Generalized Model 
with respect to Earlier Models: In the 
proposed model described by 
Equations 13, 22, and 23, the main 
determining factors in the system 
under equilibrium conditions are 
constants of substrate use by 
appropriate cell groups as well as the 
relative number of nondividing cells R 
both in the steady state and in the 
initial batch culture. This model 
allows for better understanding and 
control of the essential elements in 
continuous processes. The essence of 
the chemostat state is that the 
derivative of the dividing cells with 
respect to nondividing cells is a fixed 
constant for any a specific value D. 
That is a more reasonable and precise 
condition than that of Equation 12, 
because if D > μmax (as it was deduced 
in generally accepted models such as 
the Monod model), then culture 
process management is impossible, 
and the situation itself is by no means 
explained. Table 1 lists examples of 
possible static characteristics of 
continuous cultures that describe and 
explain the structured chemostat 
models (Equations 22 and 23) at a 
qualitatively new level. It is important 
that the Monod model can be derived 
from the general model (Equation 13, 
assuming that D ≤ μmax), provided that 
the equation is reduced to a common 
denominator and 

• R is substituted from Equation 17
• X from Equation 4 replaces S
• it is assumed that S << S0.
That simplification leads to 

Equation 24. In that equation, taking 
into account S << S0 in the 
denominator, the values X(D→0) – YS0 
and YS are comparable. So, the value S 
in the expression in brackets in the 
denominator and numerator can not 
be equated to 0. The first two terms 

in the numerator represent the sum of 
the constants, and if its sum is much 
less than the third term in the 
numerator containing multiplier S, 
then it can be equated to 0. In this 
case, for the first two terms in the 
numerator Equation 25 is true. 

Reduction of both the numerator 
and denominator in Equation 24 by 
S0Y2, replacement of D for μ, and use 
of Equation 12 leads to Equation 26. 
That equation is fully consistent with 
the Monod Equation 1, in which the 
constant KS is defined by equation 27.

Similar to the deductions of the 
Monod model, using Equations 12 and 
14 to make the appropriate 
substitutions in Equations 20 and 21 
and simplifying the deduced ratios 
results in a model of the dependence of 
specific growth rate on the substrate 

concentration proposed by Pirt (6), 
shown as Equation 28. In that 
equation, μ0 is the specific growth rate 
at zero concentration of the substrate, 

Figure 3:  Parameters of static characteristics 
at D < μmax ; line is ((D – Ykdiv)X)–1= 6.2335X – 
9.3302*
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Figure 4:  Description of the proposed 
model for all possible experimental stationary 
biomass concentrations depending on the 
flow rate D*
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* 1 = calculations from experimental results for 
D < 0.88 (h-1); 2 = Compliance with the Monod 
model, model calculations for D < 0.88 (h-1), kdiv 

> kst; 3 = deviation 1 from the Monod model, 
synchronous input culture, model calculations 
for D ≥ 0.88 μас-1, kdiv > kst; 4 = deviation 1 from 
the Monod model, experimental results for D ≥ 
0.88 (h-1); 5 = deviation 2 from the Monod 
model, substrate inhibition, endogenous 
metabolism according to Reference 7, D < 0.88 
μас-1, kdiv > kst ; 6 = deviation 3 from the Monod 
model, processes in the presence of the 
inhibitor in the medium. kdiv >> kst; 7 = deviation 
4 from the Monod Model calculations for D < 
0.88 μас-1, kdiv = 0, inhibition by the product; 8 = 
deviation 5 from the Monod model, model 
calculations for D < 0.88 μас-1, kdiv  = 0, Xp8) >> 
Xp2), oxygen limitation; 9 = Deviation 6 from the 
Monod model, model of slow growth, kdiv = 0, 
Endogenous metabolism according to 
Reference 12.

Figure 5:  Decrease of static characteristics 
for various kst at constant kdiv
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Equations 24–31: 

Equation 24         

Equation 25                          

µ =

Equation 26       

Equation 30

D =

Equation 28

[Y2A2 kdiv (X(D      0)– YS0)S0 + Y(kst – kdiv)K + 
  Y 3A2kdivSS0]

A2(X(D      0)– YS0 + YS)YS0

 Y2A2 kdiv(X(D      0)– YS0)S0 + Y (kst – kdiv)K = Constant

Constant << Y3A2kdivSS0
 ⇒

Y2A2 kdiv(X(D      0)– YS0)S0 + Y (kst – kdiv)K 0

Ykdiv S
X(D       0)– YS0  

Y
+ S

 µmaxS
=

KS + S

Equation 27

X(D       0)– YS0  

Y
KS =

µ  = µ0 + µ1 
S

KS + S

Equation 29

KS =

Equation 31

S0

YS0 + X(D       0)

2YS0
 – X(D      0) 

µ0
 = Ykdiv X(D      0)

2YS0– X(D      0)

µ1 = Ykdiv YS0 – X(D      0)

YS0 –
1
2

X(D      0)
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and the specific rate (μ0 + μ1) is reached 
when S→∞. If Equation 17 is 
substituted into Equation 21, then by 
rearranging terms and reducing the 
known small values that contain the 
parameter S2 and the constant K, we 
form an equation that is formally 
identical to the Pirt model for specific 
growth rate. Using the obtained 
equation KS, μ0, and μ1 can be defined 
as Equations 29–31. Those equations 
— which are similar to those of Moser 
(Equation 5) and Andrews (Equation 
6) — can be deduced from Equation 
13 for the structured model. An 
equation for the processes of product 
inhibition — such as the Ierusalimsky 
model (12) — can be similary deduced.

When applying this method, you 
should remember that it describes static 
characteristics, which are essentially a 
set of various processes running at 
different rates D. For continuous-mode 
cultivation, it is correct to say that 
D→0 rather than D = 0, because a 
simple substitution of D = 0 in the 
equation for the “flow” model does not 
mean that equations for batch processes 
can be automatically obtained in this 
way. Thus, the proposed continuous-
mode cultivation model is based on the 
subdivision of the microbial population 
into dividing and nondividing cells of 
zero age. The model takes into account 
different rate constants for the 
consumption of a limiting substrate 
and constants for a biomass. It also 
explains the well-known phenomenon 
of chemostat behavior deviation, which 
has not been described precisely by 
mathematical methods (12) that made 
cultivation control of microbiological 
processes impossible. Our proposed 
mathematical model of the chemostat 
will help to change the situation.

Examples of Calculations of Various 
Static Characteristics from Equations 
21–23: Table 1 lists the model 
parameters and significant factors for 
the calculation of various types of static 
characteristics. Figure 1 shows the 
literature data (7) for calculating a 
continuous process for Aerobacter cloacae 
and the corresponding curves 
calculated from the shown models. 
Table 1 shows the the data as 
“Conformity with the Monod model” 
and “Deviation 1 from the Monod 

model.” We calculated the parameters 
of those models after constructing 
dependences shown in Figures 2 and 3, 
specified in Equations (21 and 23) and 
(20 and 22), respectively for each case. 

Table 1 shows the parameters for 
other possible types of static 
characteristics of continuous cultures 
analyzed in detail in a previous study 
(12). Table 1 and the legend of Figure 4 
(numbers 2–6) show the deviations 
from the Monod model. We arbitrarily 
set Model parameters for such 
deviations (except for deviation 2, for 
which we used the parameters of the 
curve for “Conformity with the Monod 
model” and a “–” sign for the solution). 
The only condition was that the shape 
of the derived characteristics would 
strictly conform to the shape of the 
curve presented in reference 12. Table 1 
also shows the significant factors (“+” 
or “–” sign) that we used to solve 
Equation 23 and construct Figure 4. 

Figure 5 shows the decrease of the 
static characteristics for different kst 
values at constant kdiv for D ≤ μmax, as 
frequently encountered in 
microbiological practice. In all those 
examples, Y = constant. The 
calculation of the relevant 
characteristics of the substrate is not 
difficult. For all subsequent examples, 
the constant yield is used on the 
default. Therefore, experimental 
results comply with model data.

Our Proposed Model

We propose a new mathematical 
model for cell cultivation in a 
chemostat. Our model is based on the 
structuring of the biomass into two 
main groups: dividing and 
nondividing cells. The model is 
applicable both to existing static 
characteristics such as the Monod 
model and to the deviations from it.

We determined the range of 
chemostat stability at the specified 
f low rate D and concentration of the 
input limiting substrate S0. We also 
proposed the methods for determining 
parameters of the chemostat 
structured model.

The value of the derivative of 
dividing cells to nondividing cells of 
zero age is constant for a given flow 
rate. That value is no less important 

than the equality of specific growth rate 
and nutrient flow rate, which 
determines the equilibrium of the 
chemostat.

We showed that the corresponding 
specific rate constants of limiting 
substrate use by dividing and 
nondividing cells determine the system 
equillibrium. We also demonstrated 
that the new proposed structured 
model of the chemostat is more general 
than any other existing model. In each 
specific case, the model provides 
comparable equations to the well-
known models of Monod, Pirt, Moser, 
Andrews, and Ierusalimsky.
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